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The destabilization of a thin three-dimensional non-wetting film above a solid wall is 
examined for the special case in which surfactant is adsorbed onto the free surface of 
the film. Attention is restricted to the case of a Newtonian surface, with surfactant 
displaying rapid surface diffusion or exhibiting small Marangoni number, such that the 
dominant intrinsic interfacial stress is of a purely viscous origin. A surface-excess force 
approach is adopted for the purpose of incorporating into the analysis the 
attractive/repulsive dispersive forces acting between the solid wall and the film. Three 
coupled nonlinear partial differential equations are obtained that describe the ' large- 
wavelength ' spatio-temporal evolution of the free film surface following a small initial 
disturbance. These equations are shown to reduce to results in the literature in the limit 
of zero interfacial viscosities. Employing linear stability analysis, an explicit dispersion 
equation is obtained relating the growth coefficient to interfacial viscosities. It is found, 
at least in the linear regime, that the sum of interfacial shear and dilatational 
viscosities - and not each separately - imparts a damping effect that in the most 
extreme case is four-fold relative to the case of no interfacial viscosities. Nonlinear 
stability analysis in the limiting case of a two-dimensional film indicates that interfacial 
viscosities may strongly hinder the onset of instability through large interfacial stresses 
that arise in the vicinity of trough and crest regions of the film. 

1. Introduction 
A thin liquid film at rest upon a solid surface whose physicochemical nature is such 

as to repulse the supported layer is found to be unstable to minuscule departures from 
its hydrostatic configuration. This phenomenon is commonly observed in the breakup 
of a thin layer of water on a waxed surface (Jain & Ruckenstein 1976; Williams & 
Davis 1982). If a surfactant is adsorbed to the free surface of the non-wetting film, the 
robustness of its equilibrium state can be enhanced to a significant degree because 
adsorbed surfactant may impart to the free interface intrinsic rheological proper- 
ties - principally, interfacial viscosities and elasticities. 

This damping role of interfacial rheological properties is illustrated in the present 
study, which aims to develop a set of (nonlinear) partial differential equations 
describing the time-evolution of a free surfactant-adsorbed fluid interface above a 
(three-dimensional) non-wetting thin film whose lower (solid) surface is oriented 
perpendicular to gravity. The analysis serves to extend the two-dimensional linear 
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stability analysis of Jain & Ruckenstein (1976), as well as the nonlinear study of 
Williams & Davis (1982), the latter of which does not include the effects of interfacial 
rheological properties. 

In a companion study, Oron & Edwards (1993) have applied a weakly nonlinear 
stability analysis to the problem posed by a liquid film falling under gravity along a 
vertical plane in the presence of interfacial viscous stress. Previously, Whitaker (1964) 
had shown via linear stability theory that the effect of increasing interfacial viscosities 
is to lower the critical wavenumber, as well to suppress the wavenumber and growth 
rate of the most amplified mode. In their nonlinear analysis, Oron & Edwards (1993) 
(employing alternative scalings to those of Whitaker 1964), found that the evolution of 
the thin-film free surface is governed by an equation combining the well-known 
Kuramoto-Sivashinsky and Korteweg-de Vries equations. To the order of ap- 
proximation used in their analysis, interfacial viscosities were observed not to 
necessarily have an impact on the critical and fastest growing modes. In the present 
study, the linear and nonlinear dynamics of the free surface of a thin non-wetting film 
are again found to exhibit substantially different characteristics. Whereas the linear 
analysis indicates a maximum damping effect of four-fold by interfacial viscous 
stresses, the nonlinear analysis shows that a much greater instability damping effect can 
occur by means of interfacial viscosities, to the extent that the growth of the film 
instability may be significantly arrested. 

The present contribution provides a complement to several articles (Sharma & 
Ruckenstein 1986; Williams & Davis 1982; Burelbach, Bankoff & Davis 1988; Tan, 
Bankoff & Davis 1990; Jensen & Grotberg 1992) devoted to the study of the impact 
of long-range dispersive forces (as well as the effects of thermocapillarity, con- 
densation/evaporation, and other physicochemical phenomena) on the nonlinear 
evolution of a thin liquid film. Dispersive forces have been shown in these studies 
potentially to induce instability of the film, possibly leading to its rupture: nonlinear 
interactions between dispersive forces and surface tension have been found (Sharma & 
Ruckenstein 1986; Williams & Davis 1982) to accelerate the film rupture. 

The plan of the present paper is as follows. In 52 the hydrodynamical problem is set 
forth, first in dimensional, then in non-dimensional form. The long-range dispersive 
forces acting on the film and originating at the solid plane are included in the analysis 
by way of a surface-excess force assigned to the interface. This approach is described 
in 52 in the context of the more common body-force and disjoining-pressure 
approaches to thin-film hydrodynamics. A perturbation solution is obtained in $ 3 for 
large-wavelength disturbances, ultimately arriving at three nonlinear partial differential 
equations (cf. (3.20) to (3.22)) by which the instantaneous configuration of the interface 
can be studied as a function of time. In the circumstance of zero interfacial viscosities, 
the three partial differential equations combine to yield a single (nonlinear) kinetic 
equation for the interface shape, in accordance with the results of Williams & Davis 
(1982). In $4, a linear stability analysis is provided by which an explicit dispersion 
equation is derived including the effects of interfacial viscosities. In the case of infinitely 
large interfacial viscosities, it is shown that interfacial viscosities exhibit at most a four- 
fold damping effect relative to the zero interfacial viscosity case. Finally, in $ 5  results 
of a numerical analysis of the fully nonlinear equations in the case of a two- 
dimensional film are discussed. 
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2. Problem formulation 
Consider a film of liquid initially at rest upon a planar solid surface whose unit 

normal vector i3 points in a direction parallel (and opposite) to the gravity field g .  A 
(non-ionic) surfactant A ,  say, is dissolved within the film and adsorbed onto its free 
surface at the equilibrium concentration pSqo. The equilibrium surface tension v: of the 
free surface is uniform, with a value below that of the pure (non-surfactant-adsorbed) 
surface. An additional effect of the adsorbed surfactant is to engender sensible 
interfacial shear (p‘) and dilatational (K’) viscosities. Above the film is a passive air 
phase, 

Extremely small thermally excited capillary waves exist at the free surface, as 
evidenced by minute fluctuations of the film thickness h’ about its equilibrium height 
hi ; these produce fluctuations in the surface-excess surfactant concentration pSq about 
its equilibrium value pSq,. Moreover, owing to the concentration dependence of 
interfacial tension cr’, simultaneous random departures of interfacial tension from its 
equilibrium value C T ~  occur. The magnitude of these departures is governed by the so- 
called Gibbs elasticity, 

where the subscript o serves (as elsewhere) to denote evaluation of the subscripted 
quantity at the undisturbed equilibrium state. 

The equilibrium film thickness hi is assumed sufficiently small (100 nm, say) to show 
the sensible action of long-range dispersive forces over the entire thickness of the film. 
These forces are presumed to originate in the molecular repulsive/attractive interaction 
of the respective solid, fluid and air phases. The dispersive forces may either be of such 
a nature as to attract the (wetting) liquid film toward the solid surface or to repel the 
(non-wetting) film. 

The thin-film stability problem arising on account of the existence of the internal 
repulsive/attractive film force is analogous to the classical stability problem of two 
immiscible liquids of different specific gravity in an external gravitational field. That is, 
in the case of a thin non-wetting film sandwiched between an air phase and a solid wall, 
the non-wetting phase plays the role of the less-dense fluid in a superposed-fluid 
scenario that finds the less-dense fluid beneath the heavier fluid. The intermolecular 
force of the non-wetting-film problem corresponds to the gravity force of the super- 
posed-fluids problem. Both scenarios share in common the fact that any perturbation 
of the free surface from a plane-parallel shape necessarily draws the upper (‘wetting’ 
or ‘heavier’) phase towards the solid wall and therefore minimizes the total force 
potential acting on the system, reflecting the instability of both configurations. 

The uniqueness of the present thin-film stability problem vis-a-vis the superposed 
fluid problem is that the force driving the destabilization process is wholly internal to 
the system. This causes some ambiguity in the hydrodynamic treatment. Since the net 
body force acting on the entire film system (discounting gravity) is zero, the 
destabilizing force may either be attributed to a body force or a contact force acting 
within the film. This explains why two approaches to thin-film hydrodynamical 
problems have been pursued in the past : in the so-called disjoining-pressure approach 
(Deryaguin & Kusakov 1937; Deryaguin 1955), internal film forces are assigned to a 
contact force termed the ‘ disjoining pressure’, whereas in the so-called body-force 
approach (Felderhof 1968; Sche & Fijnaut 1978; Maldarelli & Jain 1982; de Gennes, 
Hua & Levinson 1990), internal film forces are assigned to a film-level body force. 
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A third alternative is pursued in the present study. The attractive/repulsive force 
potential is assigned to the free surface as a surface-excess body force vector density F’. 
This is essentially equivalent to the disjoining-pressure approach in the limiting case 
of a plane-parallel film (see Edwards, Brenner & Wasan 1991 for a comparison of the 
two approaches). In this regard, the advantage of the surface-excess force method is 
that it applies to arbitrarily curved fluid interfaces, whereas disjoining pressure is 
classically defined for plane- (or nearly plane-) parallel film configurations. 

The surface-excess force F‘ is assumed to derive from long-range (van der Waals) 
forces between solid, fluid and air molecules. For all deformations encountered in this 
study, F‘ acts in a direction normal to the solid surface (though not necessarily normal 
to the free liquid surface); hence, 

In the case of a plane-parallel film of infinite extent, the appropriate constitutive 
expression for F s  is provided by (Deryaguin & Landau 1941 ; Verwey & Overbeek 
1948) 

Fs = i3Fs .  (2.2) 

(2.3) 

Here, A is the (dimensional) Hamaker constant. Microscale random fluctuations in the 
film thickness hi thus give rise to corresponding fluctuations in F‘. 

Note that, according to (2.2) and (2.3), when 

A > 0, 

the fluid surface is attracted to the solid wall. This corresponds to the case of a non- 
wetting film (i.e. for which the ‘wetting’ air phase is attracted to the solid wall). The 
inherent instability of the non-wetting film may be established in a simple, heuristic 
manner by inspection of the normal stress condition at the free fluid interface in 
hydrostatic equilibrium; namely, 

p,-pa = 2Hc~i-I- F’. 

Here, p ,  denotes the equilibrium pressure acting within the film and p a  the air-phase 
pressure. The mean curvature scalar H, which is zero in the case of a planar film, 
possesses a positive value when the free surface is convex relative to the solid surface, 
and a negative value when it is concave. A small wave at  the free surface will produce 
a diminution of capillary pressure in ‘trough’ regions of the film and a growth of 
capillary pressure in ‘crest ’ regions of the film. Whence, film fluid may be expected to 
flow from ‘trough’ regions to ‘crest’ regions, enhancing the departure of the film from 
its equilibrium, planar shape, ultimately leading to film instability. 

2.1. Dimensional problem statement 
This subsection is devoted to a formulation of the hydrodynamic problem 
characterizing film motion consequent to small-scale departures from the initial 
equilibrium state. 

Let 
Y = i lxl+i2x,+i3x3 (2.4) 

denote a position vector measured from an origin situated on the solid surface. Here, 
(i1, i,, i3) represent a trio of orthonormal basis vectors and (xl, x,, x,) the corresponding 
Cartesian coordinates, bounded by 

(2.5) (-00 6 x1 < 00, -00 < X, < 00,0 < x3 < h’). 
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Motion within the film is assumed to obey the Navier-Stokes equations, 

p - + v . v v  = -vp+,uv2v+pg (:; ) 
and the continuity condition 

v-v = 0, 

with p the mass density of the film, p the fluid pressure, ,u the shear viscosity, 

g = -i,g (2.8) 

the external gravitational force (with g the gravitational constant), and 

v = i l u l + i 2 u 2 + i 3 u 3  

the fluid velocity vector. The gradient operator V is 

(2.9) 

(2.10) 

The instantaneous location of the free fluid interface may be described by the kinematic 
condition 

(2.11) 

Boundary conditions upon (2.6) and (2.7) include the no-slip condition at the planar 

ah’ 
-+v*Vh’  = v3. 
at 

solid surface, 

and the interfacial stress condition at the free fluid interface (Edwards et al. 1991), 

v = 0 at x, = 0, (2.12) 

-?Z. IlPll = Fs +2HCT’?2+Vs CT’+ ( K S  +,Us) vs v,. V 

+ 2,usn(b - 2H1,) : V, v + 2Hn(~ ,  +,us) V, . v 

+,uS{nxV,[(V,x v)~n]-2(b-2HIs)-V,v~n} at x ,  = h’. (2.13) 

Here, n denotes the unit surface normal, 

llPlI = P,(x,-h’ = O + ) - P ( x , - h ’  = 0-) (2.14) 

the jump condition on the pressure tensor across the free surface, with 

Pa = -/pa (2.15) 

the pressure tensor in the air phase (pa being a uniform constant), and 

P = -lp+,u(vv+Vv+) (2.16) 

the pressure tensor in the film. Moreover, 

is the spatial idemfactor, 
I = i, i, + i, i, + i, i3 

b = -VSn 

2H = ls:b 

Is = I-nn 

def 

the surface curvature dyadic, 

the mean surface curvature, 
def 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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def 

v, = I, .V (2.21) 

the surface gradient operator. Also, (:) denotes the double-dot operation according to 
the nesting convention ab: cd = ( a .  d )  (be c), for any vectors a, b, c and d. 

As developed in Appendix A, the invariant differential-geometric quantities defined 
above may be expressed explicitly in terms of the unit vectors ( i l ,  i,, i,) and appropriate 
derivatives of the scalar function h’ = h’(xl, x2, t). 

The interfacial tension gradient V ,  (T’ appearing in (2.13) arises on account of the fact 
that 

the explicit form of which requires an equation of state appropriate to the particular 
surfactant system involved. Fluctuations in the surface-excess surfactant density p i  
hence manifest themselves in interfacial tension gradients V, d. For subsequent 
purposes, the equation of state may be sought in terms of a Taylor series expansion of 
(T’ about the initial equilibrium state, 

(T’ = (T I ( / ) ; ) ,  (2.22) 

(2.23) 

Observe that to a linear approximation, the surface tension variation with surfactant 
concentration is governed inter aka by the Gibbs elasticity (2.1). 

The surface-excess surfactant density p i  appearing in (2.23) is related to the film- 
phase surfactant density pA by an adsorption isotherm, which here assumes the form 
at the free interface (x, = h’) 

(2.24) 

The bulk-phase surfactant density p A  is assumed to obey a standard Fickian 
conservation law 

subject to 

and (Edwards et al. 1991) 
i , .Vp,  = O  at x, = O  

W4 

at 
- + V ,  (up:) = DsV,2 p i  - Dn Vp,  at x, = h’. 

(2.25) 

(2.26) 

(2.27) 

The latter condition accounts for the accumulation and convection of surfactant in and 
along the free interface, as well as surface diffusion (via the interfacial diffusivity D’) 
and bulk- (i.e. film-) phase diffusion to the interface. The explicit appearance of the 
bulk diffusivity D in (2.27) (thereby obviating the need for a kinetic adsorption 
relation) corresponds to our assumption of ‘ diffusion-controlled ’ surfactant transport 
to the interface - suggesting that the surfactant adsorption step is effectively 
instantaneous relative to the time required for surfactant to diffuse to the interface. 
This assumption typically applies to very thin films of the type considered herein. 

Complete specification of the initial-boundary-value problem defined by (2.4) to 
(2.27) for the variables ( u ,  p, h’) requires specification of the initial disturbance values 
of (u ,  p, h’) relative to their pre-initial, equilibrium values [0, p,(x,), h:]. 
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2.2. Non-dimensional problem statement 
Let L denote a characteristic disturbance wavelength. Inspection of (2.13) suggests the 
characteristic disturbance velocity U be chosen such that 

u = 2 U o ,  (2.28) 
where U, = LA/phi3. (2.29) 
This choice reflects the fact that macroscopic flow within the film ultimately derives 
from the existence of long-range attractive/repulsive forces subsumed within the sur- 
face-excess force scalar Fs.  Thus, we introduce the following non-dimensionalizations : 

(2.30) I x, = XL, x, = yL, x, = E Z L ,  

v, = U E Y J , ,  v 2  = V € 2 U 0 ,  v3 = W 6 3 U 0 ,  

t = rL/ U, 2, h‘ = EhL, p ---pa = @U,/L) P, 

pA = cpA0, p l  = Pp; , ,  CT’ = ugh, F s  =f”A/ha. 

Next, define the following dimensionless groups : 

I (2.3 1) 

respectively denoting the capillary number, the respective Boussinesq numbers, the 
Reynolds number, the Grashof number, the adsorption number, and the bulk and 
interfacial Piclet numbers. We assume in what follows that all of these dimensionless 
groups are O( 1). This is expected to be the case for a thin film whose free surface is 
absorbed by a dilute monolayer of surfactant. Thus, for a dilute monolayer of octanoic 
acid spread on a water film of 100 nm thickness above a waxed surface (Ting et al. 
1984), hi = lop5 cm, L = lo-, cm, p = 1 g ~ m - ~ ,  pAo = lop4 g ~ m - ~ ,  p i o  = g cm-’, 
,u = 0.01 g cm-l s-l, - 0.01 g s-l, 
D = Ds - cm2 s-’ and A - 10-l’ dyne cm. The kinematic equations subsequently 
developed actually have a much wider range of applicability than to dilute surfactant 
monolayers, as indicated in the footnote associated with (3.13). 

Substitution of the dimensionless quantities (2.30) and (2.3 1) into (2.6)-(2.8), 
(2.1 1)-(2.16) and (2.23)-(2.27) furnishes the following dimensionless problem 
description : 

g = 980 cm2 s-l, CT, - 73 dyne cm-l, pus = 

(2.32) 

(2.33) 

a w  a w  aw 

au av  a w  -+-+- = 0, 
ax ay az 

(2.35) 
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ah ah ah 
- + u - + v - = w  at z = h ,  ar ax ay 

no-slip condition at the solid surfaces, 

u = O ,  u = O ,  w = O  at z = O ,  

and interfacial stress boundary condition 

- n 9 + e 2 B o , { n  x V,[(V, x ~).nn]-2(b-2H/,).V,v.n} at z = h.  

(2.36) 

(2.37) 

1 
= izf" +2HCa-l crn +- Cap' V, cr+ t: (BoK+ Bop) Vs 0,. ii 

+ 2e2Bo, n(b - 2H/J : 0, u+ 2He2n(Bo, + BoJ 0,. v 
+e2Bo,{nxV,[(V,xV)~n]-2(b-2~/,)~V,~~n} at z = h. (2.38) 

e 

In the above, we have introduced the additional dimensionless terms 

(2.39 a-d) 

explicit expansions of which (in the parameter e) are provided in Appendix B. 
Finally, 

(2.40) 

is the dimensionless surface equation of state, 

(2.41) ( P - l ) + -  - (rs- at z = h ( 2! a r s 2  

the dimensionless adsorption equation, and 

the convective-diffusion equation. The latter is subject to 

(2.42) 

dc - _  - 0  at z = O ,  
dz 

(2.43) 
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at z =  h. (2.44) 

3. Perturbation expansion solution 

an explicit initial disturbance condition) is sought below for the condition 
A solution to the hydrodynamic problem characterized by (2.32)-(2.44) ('joined by 

€4 1, (3.1) 
corresponding to the case of ' long-wavelength' film deformations, in other words 
where gradients parallel to the solid surface are considerably smaller than those normal 
to the solid. 

The following power-series expansions : 

u = u0+eu'+e2u2+ ..., v = v0+ev'+e2v~+ ..., (3.2a, b) 

w = wo+€W'+€2w'2+ ...) 9 = Bo+€'1+€2.P+ ...) (3.2c, d )  

f" = f s O + € f S l + € y +  ..., c = co+ec'+€2C2+. . . ,  ( 3 k . f  1 
( 3 . W  

may be substituted into (2.32)-(2.44), utilizing also the results of Appendix B; 
maintaining the leading-order terms in the parameter e yields 

r s  = r s o  + € r s i  + m s 2  + . . . , 

and 

subject to 

ah ah ah 
-+u0-+vo- = wo at z = h. a7 ax ay 

(3.9) 

(3.10) 

(3.1 1) 
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subject to 

and 

(3.12) 

(3.13a, b) 

(3.13 c) 

The surface-excess surfactant balance equation (2.44) can be shown to yield, with the 
above? 

co = 1, Po = 1, (3.13 d,  e) 

indicating that, to leading order in E ,  surfactant concentration gradients (and, likewise, 
interfacial tension gradients) do not arise. Therefore, to this order = 1 and the third 
term of the right-hand side of (2.38) vanishes. 

Equations (2.3) and (2.30) combine to yield,$ 

whence (3.5) with the condition (3.8) gives 

Substituting this expression into (3.3) and (3.4) reveals that 

and 

--+-(V2h),] 1 ah Ca-I z2 + CLZ 
4nh4ax 2 

1 ah Ca-l 
--- + ~ (V'h),] 2 + p ~ ,  
4nh ay 2 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where = 4% Y ,  71, p = P(x, Y ,  7) (3.18~1, b) 

are functions to be determined by requiring satisfaction of the interfacial stress 
boundary conditions. Use of (3.6) gives 

(3.19) 

t The uniformity of surface tension at the free film surface arises in the present case as a 
consequence of the relatively fast surface diffusion (cf. (2.44)) assumed to occur. As discussed 
following (2.31), this is expected to be true in the case of a dilute monolayer of surfactant. For 
compressed monolayers, surface diffusion will be much smaller and surface tension gradients will 
contribute an important, and perhaps dominant, contribution to the intrinsic interfacial stress. 
However, at least for surfactant systems exhibiting a critical micelle concentration (cmc), it is possible 
that for surfactant concentrations significantly exceeding the cmc, the Gibbs elasticity, ( 2 .  I), will tend 
toward zero (see Lucassen & Hansen 1966 and Ting, Wasan & Miyano 1985), so that, even in the 
presence of finite surface concentration gradients, Marangoni effects will be very small ; explicitly, 
Mu = E,/[puD(~c/~T") ,]  < 1 .  The results of the present analysis thus apply to these cases as well. 

1 Since, for long-wavelength disturbances E < 1, the film remains nearly plane parallel, the leading- 
order contribution to the surface-excess force (3.14) is that provided by (2.3).  The higher-order 
contributions to the surface-excess force will be of a more complex character whose precise form must 
be derived (e.g. from Lifshitz theory: see Prieve & Russel 1988) as a function of the instantaneous 
surface shape. See also the Hamaker approach of Maldarelli et al. (1980). 
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where condition (3.7) has also been employed. Finally, substitution of (3.16), (3.17) and 
(3.19) into (3.9) to (3.11) furnishes the following three equations: 

Ca-’ hV2h, = Bo, h(a,, -p,,) 

Ca-l hV2h, = -Bop h(a,, -/3,,) 

= O .  (3.22) 

Here, we have utilized the simplified notation 

as well as 
ah 

h , = - - .  a7 

(313) 

(3.24) 

Equations (3.20)-(3.22) provide three coupled nonlinear differential equations by 

In the limiting case of zero interfacial viscosities (3.22) becomes 
which the functions a(x, y ,  7 ) ,  /3(x,y, 7 )  and h(x, y ,  7 )  are to be determined. 

(3.25) 

This result was first obtained by Williams & Davis (1982). 
Equation (3.25) represents a single equation in the unknown h(x,7) ,  to be solved 

together with appropriate (e.g. periodic) boundary conditions on x and y and an initial 
disturbance condition. (Williams & Davis 1982 have provided a numerical study of the 
one-dimensional version of this equation. The evolution of an initial disturbance of the 
free surface is found to result in a rupture of the film which manifests itself in the 
emergence of spots of zero thickness h. Naturally, as the magnitude of surface tension, 
characterized by the inverse capillary number Ca-l, increases, the growth of the 
disturbance is slower and the rupture time is longer.) The instability of the film, being 
reflected in the growth of h(x ,7 )  with time 7 following an initial perturbation from 
equilibrium, is driven by the first term on the right-hand side of the equation. This, 
however, is only true for a non-wetting film. For a wetting film the term 
- (1 /67c) V (Vh/h)  changes sign - thus becoming stabilizing - since for a wetting film 

A < 0 .  (3.26) 

These observations follow upon noting that the characteristic velocity U ,  (cf. (2.29)) 
reverses sign when the Hamaker constant A is negative, resulting in a sign reversal in 
both the capillary number Ca (cf. (2.31)) and the dimensionless time 7 (cf. (2.30)). The 
second term on the right-hand side of (3.25) is dissipative for both wetting and non- 
wetting films, reflecting the stabilizing role of interfacial tension. 



298 D. A .  Edwards and A .  Oron 

The set of partial differential equations (3.20)-(3.22) must be accompanied by 
appropriate boundary conditions. A numerical study of these equations is undertaken 
in 95. In the linearized calculations that follow (in §4),  it will be assumed that the film 
consists of periodic cells, whence the boundary conditions for the film thickness h(x, 7) 
are themselves periodic. Periodicity of the x- and y-components of the velocity field 
(cf. (3.16) and (3.17)) results in periodic boundary conditions on the functions a(x,y, 7) 
and p(x, y ,  7). 

4. Linear stability analysis 
Considerable insight may be gained upon linearizing (3.20)-(3.22) around the 

equilibrium state, h = h,+#, where 4 4 h, (such that (a,/3) + 1). In this case, we 
obtain the trio of equations 

h: h2 1 Ca-1 
#T + - CL, + 2 p, -- V2$  - - h: V4# = 0. 

2 2 12nh, 6 (4.3) 

Substituting into these equations the waveforms (a,  p, #) cc exp (ik, x + ik, y + W T )  and 
imposing the existence requirement that the determinant of the coefficient matrix be 
zero, results in the determinant equation 

ik, h: ___ 
2 

ik, hi 
2 

__ 

- ik, q 1 + Bop h, k i  + (Bo, + Bo,) h, kz B°K hO k Z  k g  

-ik,q Bo, ho kx k ,  1 +Bop h, kz + (Bo, + Bop) h, ki 

= 0,  (4.4) 
where 

Ca-' h, k2 + (Bo,+ Bo,) q = -- 1 
2nh3, (4.5) 

and k2  = k;+ki. 

determinant. This may ultimately be expressed in the form 
An explicit dispersion relation w E w(kx, k,) follows upon evaluating the above 

1- 4+h,k2(Bo,+Bo,) 
24nh, [l+h,k"(Bo,+Bo,) 

( 1  - 2 x C ~  h,k ) 
k 2  w = -  

In the limit of zero interfacial viscosities (Bo, = Bo, = 0) ,  we find 

k2 
6nh, 

o = ~ ( 1  - 27~ CU-' h4, k2) ,  (4.7) 
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whence for small wavelengths ( k  9 1) (this limit, as further discussed below, is not 
strictly valid given the restriction (3. l)), 

w z -;Cap' 11; k4 
revealing that the interface is stable, and for large wavelengths (k  + l),  

showing the interface to be unstable. 
Equation (4.6) demonstrates that interfacial viscous stress cannot alter the stability 

properties of the modes, rather only the growth rate of the perturbations. This 
equation is in agreement with that derived by Ruckenstein & Jain (1974) (cf. their 
equation (39)) in the long-wave (k  4 1) limit, representing the limit of validity of our 
analysis. For finite values of k their equation differs from our own owing to the 
approximation (3.1) made in the present analysis. 

For finite interfacial viscosities, we have the seemingly remarkable fact that the 
interfacial shear and dilatational viscosities do not appear independently in (4.6). While 
this observation also applies to the two-dimensional linear stability analysis of Jain & 
Ruckenstein (1976), it is indeed a requirement of ' one-dimensional ' interfacial 
rheological problems involving Newtonian interfaces that interfacial shear and 
dilatational viscosities act as a single viscous property of the interface. This may be seen 
from the limiting form which the interfacial stress equation (2.18) obtains for a one- 
dimensional interface, namely, 

which result underlies the Cartesian-component interfacial stress equation employed 
by Oron & Edwards (1993). However, there seems to be no a priori reason to have 
suspected the same to be true in the three-dimensional (two-dimensional interface) 
case, and it is expected that for the full nonlinear treatment of the problem (as 
embodied in (3.20)-(3.22)) this combined manifestation of interfacial shear and 
dilatational viscous effects will not occur. 

In the limit of infinite Boussinesq numbers, (4.6) gives 

(1 - 2~ CU-' h4, k2) ,  
k2 

24nh, 
w = -  (4.9) 

revealing (upon comparison with (4.7)) that interfacial viscosities have at most a four- 
fold damping effect. This conclusion was first reached by Jain & Ruckenstein (1976) in 
their two-dimensional (one-dimensional interface) investigation of this same problem. 

In figure 1 neutral stability curves w = w(k) of the dispersion relation (4.6) are shown 
for the cases of B = 0, 1, 10, 100 (where 3 = Bop +Bo,) when Ca = 1 (with also h, = 1). 
For a fixed value of Cu, the growth rate w of perturbations may be observed to decrease 
with increasing interfacial viscosities (i.e. B), thus the growth rate is highest when 
interfacial viscosities are absent ( B  = 0). (It may also be shown that, for a given value 
of B, the lower is the capillary number Ca, the narrower is the range of linearly unstable 
modes corresponding to w > 0.) Variation of B does not affect the band of unstable 
modes 0 < k < k ,  and the dominant wavenumber, k ,  (obtained from (4.6) by setting 
dw/c?k = 0), possesses the value 

(4.10) 
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FIGURE 1 .  Growth coefficient w versus wavenumber k at various values of the Boussinesq number sum 
B = Bo,+Bo, and at fixed capillary number Ca = 1. The results are based upon (4.6) with an 
equilibrium dimensionless film thickness h, = 1 .  

for both the cases of zero (B-tO) and infinite (B-too) interfacial viscosities, only 
slightly deviating from this value for finite interfacial viscosities. The above result is in 
agreement with that obtained by Jain & Ruckenstein (1976). 

5. Nonlinear stability analysis 

dimensional case, independent of y .  Equations (3.20)-(3.22) reduce to 
We limit our numerical investigation of the strongly nonlinear regime to the two- 

Ca-' 

(5.2) ca-' 
Bha -a = ---Ca-'hhxxx-Bh2((") hx -,-h,,, , 2nh3 12x xx 

where B = Bo,+ Bop and a = a(x, 7). Equations (5 .  I)  and (5.2) are to be supplemented 
by periodic boundary conditions for a and h in the domain 0 < x < L, and an initial 
condition h(x,O) = h,(x) of the following two types: 

(5.3a, b) 

where 6 4 1 is a constant, r(x) is a random function uniformly distributed in the 
interval (- 1 , l )  and k, is the fundamental mode that can be accommodated in the 
domain. Equations (5.1) and (5.2) are numerically solved using the following 
procedure: first, (5.2) is solved to find a employing h(x,7) determined previously for a 
given 7 or specified in the initial condition; next, the function a calculated from the 
previous step is introduced into (5.1) to calculate h(x, 7+  S7), where 87 is a small time 
step. The procedure is then repeated to compute h(x,7) at the next time level. 

Tens of numerical experiments were performed with (5.1) and (5.2) in order to follow 
the spatio-temporal evolution of the film for different values of the parameters in the 

h,(x) = 1 + S sin (k ,  x), h,(x) = 1 + Sr(x), 
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FIGURE 2. Spatio-temporal evolution of the film interface as described by (5.1) and (5.2) for 
CQ-~ = 0.01, L = 2.5133 (k, = 2.5). The initial condition is h, = 1 +0.01 sin (k ,x) .  The fastest 
growing mode for the given values of the parameters is k ,  = 2.821. (a) B = 0.1; the curves 
correspond to the times 7 = 22.3, 23.1, and 23.9. The curve corresponding to T = 23.9 represents the 
state topologically similar to the steady solution for (5.1) and (5.2). (b) B = 1 .O; the curves correspond 
to the times, 7 = 42.6, 45.2, 47.8, and 50.4. The curve corresponding to 7 = 50.4 represents the state 
topologically similar to the steady solution for (5.1) and (5.2). Diminution of the rate of film rupture 
is clearly seen. 

ranges 0.01 < Ca-' < 1 and 0.05 < B < 5. The domain size L was chosen in the range 
0.5A, < L < lOA,, where A, is the fastest wavelength based on linear stability, as 
given by (4. IO), A, = 2.n/k, z 4.nh,2(lrCa-1)1/2. In all the cases studied, the evolution of 
the initial data given either by (5.3a) or (5.3b) leads to a diminution of the rate of the 
film rupture process and to the emergence of steady solutions of (5.1) and (5.2). 

Figures 2(a) and 2(b)  display typical examples of the spatio-temporal evolution of 
the film starting with the initial data ( 5 . 3 ~ )  with S = 0.01, Ca-l = 0.01 and for B = 0.1 
and 1, respectively. The domain size L in these examples is larger than A,. In the case 



302 D. A .  Edwards and A .  Oron 

1 .0 

0.8 

hmin 0.6 

0.4 

0.2 

B -  

I 
0 10 

I \ 
II I I I !  

20 30 40 50 60 70 
z 

FIGURE 3. Temporal evolution of the minimum film thickness A,,," for Ca-' = 0.01, L = 2.5133 
(k ,  = 2.5) and for various values of B. The initial condition is A, = 1 +0.01 sin(k,x). Solid curves 
represent the nonlinear evolution as found from the solution of (5.1) and (5.2), while the 
corresponding dashed curves represent the linear evolution in accordance with (4.6), with k = k,bf. 
The dotted curves represent the stage of the evolution that is formally beyond the validity of the long- 
wave theory. 

of a small Boussinesq number B, e.g. B = 0.1, the crest flattens out during the evolution 
while remaining convex. For higher values of B, e.g. B = 1, the crest splits into two 
secondary crests. The appearance of the secondary wave at the higher Boussinesq 
number is attributed to the ability of the interface to intrinsically resist (via sensible 
interfacial viscosities) deformation of the interface caused by the van der Waal 
attraction of the interface toward the lower surface. In the deepest trough shown in 
figure 2(b) ,  a large interfacial viscous stress accompanies the relatively large local 
surface curvature. This stress is effectively distributed across the entire free surface by 
the appearance of the secondary trough, which enhances the intrinsic interfacial 
resistance of the interface by inducing surface curvature. 

The time evolution of the minimum film thickness is presented in figure 3 for various 
values of B (solid curves) along with the evolution predicted by the linear theory (cf. 
(4.6)), corresponding to k = k,, and Ca-' = 0.01 (dashed curves). The curve 
corresponding to a pure interface with no interfacial viscosities, B = 0, represents the 
result of Williams & Davis (1982). As predicted, the film ruptures under the influence 
of the van der Waals forces. In the presence of interfacial viscous stress, the 
perturbation grows and saturates at the thickness h = hLin. The minimum thickness 
hRi, increases with increasing B when Ca and L are fixed. Comparison of the curves 
corresponding to the linear and nonlinear evolutions shows that three different stages 
exist. First, the perturbation grows in accordance with the linear theory. Next, the 
disjoining pressure dominates and the growth rate of the perturbation is superlinear. 
Finally, the growth is dominated by interfacial viscous stress, resulting in strong 
damping of the rate of film thinning and, ultimately, saturation of the disturbance (i.e. 
the dotted segments of the curves). 

The saturation of the film disturbance, corresponding to h = h&, is a very 
surprising result. It appears to indicate that the effect of finite interfacial viscosities is 
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FIGURE 4. Rate of change (dh,Jd.r) of the film thickness in the vicinity of the minimum film Lickness 
h,,, for Ca-' = 0.01, L = 2.5133 (k, = 2.5) and for various values of B. The initial condition is 
h, = 1+0.01 sin(k,x). The curves represent the nonlinear evolution as found from the solution of 
(5.1) and (5.2). 

to stabilize an otherwise thermodynamically unstable film. Especially surprising is the 
fact that the steady-state solution h = hLin is accompanied by a small though finite 
fluid motion. This is obviously a violation of energy conservation since, in the absence 
of an evolving film shape, no energy is provided to the film by which this motion can 
be maintained. However, closer examination of the numerical results shows that prior 
to the attainment of the saturated solution h = Akin, a very large surface curvature (i.e. 
h,, % 1) arises in the vicinity of the minimum film thickness; since the surface 
derivatives of h are assumed to be everywhere of order unity, this attainment of large 
curvature violates a basic assumption of the long-wave analysis (cf. (3.1)). Hence, the 
steady solutions associated with h = hgin lie outside the domain of validity of (5.1) and 
(5.2). (Other circumstances where long-wave nonlinear stability theory is violated have 
recently been discussed by Salamon, Armstrong & Brown 1994.) 

The emergence of steady solutions (figure 3), and particularly the disturbance 
damping that precedes these steady solutions, does, however, illustrate an important 
physical interfacial phenomenon. As the disturbance grows on the free surface of the 
non-wetting film, deep troughs form (figure 2). In the vicinity of these troughs, the local 
curvature radius becomes very small. The consequence of finite interfacial viscosities 
is that extremely large interfacial stresses (characterized by the local Boussinesq 
number (,us + K')>/,UU, with a the local curvature radius) arise in the trough regions, 
practically rendering the interface in these regions ' solid-like'. This is essentially the 
same phenomenon attested to by observations (Silvey 1916) early in the century that 
very small droplets appear to settle as solid spheres, leading Boussinesq (1913) to 
develop the first hydrodynamical theory of interfacial viscosity. Thus, while the steady- 
state solutions predicted by (5.1) and (5.2) are non-physical and lie outside the domain 
of validity of the analysis, the prediction of a rapid diminution of the rate of film 
instability, caused by interfacial viscosities, is both within the domain of mathematical 
validity of the theory and physically realistic. This fact is confirmed in figure 4, which 
displays the behaviour of the time derivative dhmin/dr versus time at various values of 
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the Boussinesq number. The results shown lie within the domain of validity of the long- 
wave theory. This figure shows that, even within the ‘ small-curvature’ conditions of 
the long-wave limit, the damping effect caused by interfacial viscosities is much larger 
than the maximum four-fold damping effect predicted by the linear theory. 

We expect that a numerical analysis of the full (large-amplitude disturbance) 
nonlinear instability problem will show that a non-wetting film upon a solid surface 
progresses toward breakup relatively slowly for finite interfacial viscosities, though at 
a positive rate. Such an analysis should be pursued, not only for the present non- 
wetting film problem, but also for many other film instability problems, such as those 
involving coalescing bubbles and droplets. It is hoped that analyses of this type will 
provide theoretical insight into the body of published data (Edwards et al. 1991) that 
show interfacial viscosities and elasticities often to be controlling parameters in the 
stability of foam and emulsion systems. 

Finally, we expect similar results as those obtained here for interfacial viscosities to 
apply for interfacial ‘Marangoni’ elasticities, insofar as the latter also lead to a 
‘hardening’ of the interface. Of course, the occurrence of Marangoni stresses 
potentially introduces many other complexities into the analysis that have been 
avoided here, such as the precise nature of surfactant absorption/desorption kinetics 
and the equation of state by which interfacial tension gradients are related to the 
surface-excess surfactant concentration profile. 

6. Summary 
A nonlinear stability analysis has been presented for the case of a thin film on a non- 

wetting surface. By focusing attention upon the special case of either rapid surface 
diffusion or small Marangoni number, the role of interfacial viscosities in the damping 
of interfacial instabilities has been examined independently of the role of interfacial 
tension gradients. Three coupled nonlinear partial differential equations have been 
derived in the long-wavelength limit to describe the temporal evolution of the film. 
Linear stability analysis has shown that interfacial viscosities can cause as much as a 
four-fold damping of film instability. In the nonlinear regime, the interfacial viscosities 
give rise to a very strong film instability damping, much stronger than that predicted 
by the linear theory. It is important in future studies to numerically examine the 
evolution of large-amplitude disturbances of inherently unstable films with finite 
interfacial viscosities in order to clarify the degree of perturbation slowdown that can 
be caused by interfacial viscosities when the film surface becomes highly deformed. 

A. 0. acknowledges the support of the Technion V.P.R. Fund. 

Appendix A. General component representations of surface invariants 

surface characterized by (2.12) is 
In terms of the space-fixed Cartesian coordinates (x l ,  x,, x3), the unit normal n of the 

where 
1 dPf 

N =  
(1 + h;2 + h y  ’ 
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following a similar notation as in (3.23): the subscripts 1, 2 denote respectively the 
derivatives with respect to x, and x,. 

Employ (2.20) to obtain for the surface idemfactor 

I, = i, il( 1 - N2h;,)  + i, i2( 1 -N2h’,’) + i, i3( 1 - N 2 )  

+ (i, i, + i3 il) N2h; + (i, i, + i, i,) N2h’, - (i, i, + i, i,) h;hi N 2 .  (A 3 )  

Dot multiplication of (A 1) and (A 3) shows that n./, = 0.  
Use of (2.21) with the preceding results gives 

whence the curvature dyadic (2.18) becomes 

Appendix B. Explicit expansions of surface invariants 

(A 3) allow the following perturbation expansion of the unit surface normal: 

This satisfies 

Employing the non-dimensionalized coordinates (cf. (2.30)), equations (A 2) and 

(B 1) n = i, [ 1 - ie2(hE + hi)] - i, eh, - i, chv + O(c3). 

n.n = 1 + 0 ( € 3 ) ,  

as required. Similarly, (A 5 )  may be expanded in c to give 

I, = i, i,( 1 - c2hE) + i, i,( 1 - €‘hi) 

+ i, i, c2(h: + h i )  + (i, i, + i, i,) ch, 

+ (i, i, + i, i,) ch, - (i, iy + i, i,) c2hZ h, + O(e3), 

which necessarily satisfies 
is : /s = 2 + 0 ( € 3 )  
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and n.1, = O(s3). 

From (A 4) (employing the non-dimensionalization (2.39)), we have 

D. A. Edwards and A .  Oron 

"I c? a 
ax X " Z  " y  

(1-s2h2)-+sh ---e2h h - 

The curvature dyadic b follows from (A 5 )  (with also (2.39)), whence 

b = i, i, h,, + i, iy h,, + (i, i, + i, i,) h,, 

+ (i, i, + i, i,) e(h, h,, + h, hz,) 

+ (i, i, + i, i,) e(h, h,, + h, h,,) + O(e2). 

This satisfies the necessary condition 

b = 6'. 

Employ (2.19) and (2.39) with (B 2) and (B 4) to obtain 

2I? = h,, + h,, + O(e2) 

for the mean surface curvature. 
The following differential invariants are obtained from the above : 
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whence 

and 

Finally, use 

where 
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is the unit alternator triadic, to find 

D. A. Edwards and A. Oron 

+ g ( h ;  + h2) (2 - - - 2 ) + 0 ( c 3 ) .  (B 11) 

The equations of this Appendix may be employed to express (2.50) in explicit 
component form to O(e3). 
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